Convergence to Equilibrium in Local Interaction Games and Ising Models
نویسندگان
چکیده
Coordination games describe social or economic interactions in which the adoption of a common strategy has a higher payoff. They are classically used to model the spread of conventions, behaviors, and technologies in societies. Here we consider a two-strategies coordination game played asynchronously between the nodes of a network. Agents behave according to a noisy best-response dynamics. It is known that noise removes the degeneracy among equilibria: In the long run, the “riskdominant” behavior spreads throughout the network. Here we consider the problem of computing the typical time scale for the spread of this behavior. In particular, we study its dependence on the network structure and derive a dichotomy between highly-connected, non-local graphs that show slow convergence, and poorly connected, low dimensional graphs that show fast convergence. ∗ Departments of Electrical Engineering and Statistics, Stanford University Department of Management Science and Engineering, Stanford University
منابع مشابه
Fast convergence in evolutionary equilibrium selection
Stochastic best response models provide sharp predictions about equilibrium selection when the noise level is arbitrarily small. The difficulty is that, when the noise is extremely small, it can take an extremely long time for a large population to reach the stochastically stable equilibrium. An important exception arises when players interact locally in small close-knit groups; in this case co...
متن کاملConvergence to Equilibrium of Random Ising Models in the Griffiths Phase
We consider Glauber-type dynamics for disordered Ising spin systems with nearest neighbor pair interactions in the Griffiths phase. We prove that in a nontrivial portion of the Griffiths phase the system has exponentially decaying correlations of distant functions with probability exponentially close to 1. This condition has, in turn, been shown elsewhere to imply that the convergence to equili...
متن کاملReduction of Reservoir Fluid Equilibrium Calculation for Peng-Robinson EOS with Zero Interaction Coefficients
For some of the EOS models the dimension of equilibrium problem can be reduced. Stability and difficulties in implementation are among the problems of flash calculation. In this work, a new reduction technique is presented to prepare a reduced number of equilibrium equations. Afterwards, a number of appropriate solution variables are selected for the prepared equation system to solve the equati...
متن کاملNash Equilibrium Strategy for Bi-matrix Games with L-R Fuzzy Payoffs
In this paper, bi-matrix games are investigated based on L-R fuzzy variables. Also, based on the fuzzy max order several models in non-symmetrical L-R fuzzy environment is constructed and the existence condition of Nash equilibrium strategies of the fuzzy bi-matrix games is proposed. At last, based on the Nash equilibrium of crisp parametric bi-matrix games, we obtain the Pareto and weak Pareto...
متن کاملConvergence rates of Markov chains for some self-assembly and non-saturated Ising models
Algorithms based on Markov chains are ubiquitous across scientific disciplines as they provide a method for extracting statistical information about large, complicated systems. For some self-assembly models, Markov chains can be used to predict both equilibrium and non-equilibrium dynamics. In fact, the efficiency of these self-assembly algorithms can be related to the rate at which simple chai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0812.0198 شماره
صفحات -
تاریخ انتشار 2008